
The PT326 process trainer presented in Figure 1, models
industrial situations when the temperature control is required
in the presence of transport delay. The process involves air
transported and heated as it passes over a heater grid before
being released into the atmosphere through a tube. The control
objective is to maintain the temperature of the airy at a desired
level. Temperature control is achieved by varying the electrical
poweru supplied to the heater grid . The air temperature may
be sensed by using a bead thermistor placed in the flow at
any of three positions along the tube. The spatial separation
between the thermistor and the heater introduces a transport
delay into the system [3].

Generally the model identification is determining the param-
eters of a mathematical model, the structure is established ac-
cording to a given criterion, the model parameters are obtained
by minimizing the prediction error between the measured out-
put and the estimated output according an optimality criterion
(e.g., least squares, mean square error, maximum likelihood),
we are particularly interested in the least squares method. The
goal is to find the best set of parametersθ, which from a set
of measurementsϕ predicts with accuracy the output actually
measured. Suppose that as a result of an experience we have

Fig. 1. the PT326 blower bloc diagram

a set of measures{y(k), u(k); k = 1, ...,M} and the set of
parametersθ is unknown. We construct the sequence of the
predicted output:

y(k) = θ(k)T ϕ(k) (1)

The vector of parametersθ is the one that minimizes the
following norm:

θ = arg max(QN) = arg max

(
1
M

M∑

k=1

(
y(k)− θ(k)T

ϕ(k)
)2

)

(2)
So we get the classical least square solution in its recursive

form (RLS: Recursive Least Square):

θ(k) = θ(k − 1) + F (k)ϕ(k)
(
y(k)− θT (k − 1) ϕ(k)

)
(3)

where:
F (k)−1 = F (k − 1)−1 + ϕ(k) ϕ(k)T (4)

and

F (k) = F (k − 1)− F (k − 1) ϕ(k) ϕ(k)T
F (k − 1)

1 + ϕ(k)T
F (k − 1)ϕ(k)

(5)

Consequently in order to apply the RLS technique for the
identification of the PT326 blower we propose to identify the
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system parameters in two operating points.This can be done
by applying two different input sequences to the system and
recovering the corresponding output signals for each operating
point. Each of these latter is represented by a strictly causal
discrete time linear system described by an ARX model [1]:

y(k) =
na∑

j=1

ha(j) y(k − j) +
nb∑

j=1

hb(j) u(k − j) (6)

whereu(k) andy(k) are the system input and output respec-
tively, na andnb (nb < na) are the model orders associated
to the output and the input respectively,ha and hb are the
model parameters. The ARX model (6) can be rewritten as a
vector form as following:

y(k) = θT ϕ (7)

whereϕ is the regression vector andθ is the parameters vector:

ϕ = [y(k − 1) . . . y(k − na) u(k − 1) . . . u(k − nb)]T (8)

and
θ = [ha(1) . . . ha(na) hb(1) . . . hb(nb)]T (9)

In figures 2 and 3, we present the input and output signals
used for the identification of the PT326 blower for each
considered operating point. The used input signals are random
gaussian signals. We resume, in table I, the identification
results for each operating point illustrated.
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Fig. 2. First operating point input andoutputsignals
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Fig. 3. Secondoperatingpoint input andoutputsignals

TABLE I
IDENTIFICATION RESULTS OF THEPT326PROCESS TRAINER

θ QN (%)

[0.0512 0.0953 0.0315 0.0861 0.0944

0.1139 0.1248 0.13 0.1347 0.1381] T 2.2629e−12

[0.1175 0.0851 0.0553 0.0553
0.1586 0.1684 0.1835 0.2043]T

6.1744 e−11

The loop shaping technique [5] consists inusing a pre-
compensator or a weighting filterVc(s) to ameliorate the
performance of open loop continuous transfer functionGc(s)
as illustrated in Figure 4. TypicallyVc(s) aims to ensure a high
gain at low frequencies (to ensure a zero static error in the
case of a tracking reference) and low gain at high frequencies
(to ensure robustness against the disturbance rejection at high
frequencies).
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Fig. 4. Continuous time loop shaping principle

This techniqueprovides the commonly known shaped sys-
tem given by:

Gc,sh(s) = Vc(s)Gc(s) (10)

Our aim is to exploit the loop shaping technique in the
discrete case to identify the discrete weighting filterVd(z)
associated with the discrete shaped system defined as follows:

Vd(z) =
VcGc(z)
Gd(z)

(11)

For digital control of a continuoussystem,the discrete loop
shaping is presented in Figure 5.
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Fig. 5. Loop shaping in the discretecase

The discrete shaped systemGd,sh(z) defined by:

Gd,sh(z) = Vd(z) Gd(z) (12)

2. Linear Robust Controller Using   
 LSDP Approach 

2.1. Control Principle by Discrete Loop Shaping 

2.2. Coprime Factor Uncertainty Representation 
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can be writtenfor an inputu(k) and an outputy(k) in the
following state space representation [2]:

{
x(k + 1) = Ashx(k) + Bshu(k)
y(k) = Cshx(k) + Dshu(k)

(13)

with Ash ∈ <n×n, Bsh ∈ <n×1, Csh ∈ <1×n andDsh ∈ <
such as pairs of state matrices(Ash, Bsh) and(Ash, Dsh) are
respectively controllable and observable,n ∈ N+ is the order
of the system. In this case, the shaped system can be written
in the following forms:

Gd,sh(z) :=
(

Ash Bsh

Csh Dsh

)
(14)

Gd,sh(z) = Dsh + Csh(zIn −Ash)−1Bsh (15)

whereGd,sh(z) ∈ <H∞ the space of proper and real rational
stable transfer functions. The LSDP approach is based on the
configuration depicted in Figure 6, where:

Gd,sh(z) = M̃−1
d,sh(z) Ñd,sh(z) (16)

with M̃d,sh(z) and Ñd,sh(z) are the left normalized coprime
factors ofGd,sh(z) such that:

M̃d,sh(z) :=
(

Ash + RCsh R

S−1/2Csh S−1/2

)

Ñd,sh(z) :=
(

Ash + RCsh Bsh + RDsh

S−1/2Csh S−1/2Dsh

) (17)

where:
R = −(BshDsh + Y CT

sh)S−1 (18)

S = 1 + D2
sh (19)

andY is the unique positive definite solution of the algebraic
Riccati equation:

(Ash −BshS−1DT
shCsh)T Y + Y (Ash −BshS−1DT

shCsh)

− Y CT
shS−1CshY + BshS−1BT

sh = 0
(20)

Subsequently, the LSDP approach makes it possible to take
into account the parametric uncertainties of the shaped system
Gd,sh(z) by considering the representation in the form of
left normalized coprime factorization (LNCF) to obtain the
uncertain shaped systemG∆

d,sh(z):

G∆
d,sh(z) =

(
M̃d,sh(z) + ∆sh,M̃ (z)

)−1 (
Ñd,sh(z) + ∆sh,Ñ (z)

)

(21)
where∆sh,M̃ (z) and∆sh,Ñ (z) are the parametric uncertain-
ties over the left normalized coprime factors, they are unknown
stable transfer functions, but bounded in infinity norm.

To maximize the class of perturbed models such that the
closed-loop system in Figure 6, is stabilized by a controller
K∞(z), this latter must stabilize the nominal plantGd and
maximizeε where:

ε−1 =
∥∥∥∥
[

K∞
1

]
(1−Gd,shK∞)−1

M̃−1
d,sh(z)

∥∥∥∥
∞

(22)

Fig. 6. Robust stabilization principle

From the small gain theorem, the closed-loop system will
remain stable if: ∥∥∥

[
∆sh,Ñ∆sh,M̃

]∥∥∥
∞

< ε (23)

The maximum stability margin is derived by McFarlane and
Glover in [5] as:

εmax = (1 + λmax (XY ))−1/2 (24)

whereλmax (XY ) is the maximum eigenvalue of the product
matrix XY and Y is the positive-definite solution of the
algebric Riccati equation given in (20) andX is the solution
of the following algebric Riccati equation:

(Ash −BshS−1DshCsh)T X + X(Ash −BshS−1DshCsh)

−XBshS−1BT
sh + CT

shS−1Csh = 0
(25)

A controller which achieves both robust stability andεmax

is given by:

K∞,opt(z) :=(
Ash + BshF + ε−2

max(LT )−1Y CT
sh(Csh + DshF )

BT
shX

ε−2
max(LT )−1Y CT

sh

−DT
sh

)

(26)

where:
F = −S−1(DshCsh + BT

shX) (27)

L = (1− ε−2
max)In×n + XY (28)

To ensure the similarity between the frequency response of
(K∞,optGsh) and that ofGsh the value ofεmax must satisfy
the following condition:

0.2 < εmax < 1 (29)

If the condition (29) is not satisfied, the weighting filter
Vc(s) have to be readjusted.

Finally, the final robust controller is calculated as follows:

Kd,f (z) = Vd(z)K∞,opt(z) (30)
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In this section, we will beanalyzing the behavior of
the nonlinear system PT326 process trainer and proposing
a method to synthesize a control law to ensure reference
tracking performance. To do this we propose to decompose
the representation of the nonlinear system PT326 into a set of
linear sub-models according to the variation of a sequencing
parameter. Then, the discrete LSDP approach is applied for
each sub-model. Subsequently, the obtained final robust con-
trollers serves to synthesize the global robust controller using
the gain scheduling technique [4]. The obtained global robust
controller is used to control he nonlinear system.

Many industrial systems are characterized by variations on
parameters that affect their dynamics. Calculate a controller for
this type of systems is not an easy task because these variations
must be taken into account to obtain efficient control laws.
One of the techniques used to overcome these constraints is
the control by gain scheduling technique to build an adaptive
control that count for parameter variations. This method has
many advantages such as the ability to use the tools of modern
theory of robust control and also the ability to update the
parameters of the correction block.

The control by gain scheduling is based on the calculation of
its coefficients off-line for several operating conditions of the
system, and then adapts these coefficients using interpolation
methods. The interpolation/ adaptation is made from a set
of parameters varying in time that captures the change of
system’s operating conditions, which is often called scheduling
parameter. For this technique, a set of linear invariant rep-
resentation (LTI) is calculated, the a controller is calculated
for each LTI representation using such powerful modern tech-
niques of robust control theory, ex LSDP approach, that meets
the performance requirements of the user locally. Finally, a
nonlinear global controller is calculated by combining these
local controllers through an interpolation method with respect
to the scheduling parameter measured in real time.

1) Synthesis of the weighting controller:In our study
we will use two operating points to describe the nonlinear
behavior of the system, depending on the temperature variation
which represents the scheduling parameter.

S :

{
G1

d(z) if 0.5 ◦C ≤ y < 3.3 ◦C

G2
d(z) if 3.3 ◦C ≤ y ≤ 6.3 ◦C

(31)

Each linear modelGj
d(z), j = 1, 2 is defined for a specific

operating point where the identified parameters are presented
in table I. To establish the shaped representationGc,sh(s), the
chosen weighting filter is given as follows:

Vc(s) =
5

s + 0.01
(32)

In the discrete casewe integrate a zero-order holder circuit
with a sampling periodTe = 50 ms.

In equation (11),Gd(s) is replaced byGj
d(z), j = 1, 2 to

deduce the discrete weighting filter associated toGj
d(z), j =

1, 2:

V 1
d (z) =

0.01499z6 + 0.01267z5 − 0.003508z4 − 0.003743z3

0.0512z6 − 0.001058z5 − 0.1027z4 + 0.1109z3

−0.003888z2 − 0.004007z − 0.001985
−0.03986z2 − 0.1017z + 0.08327

V 2
d (z) =

0.01499z5 + 0.012z4 − 0.004805z3 − 0.005172z2

0.1175z5 − 0.136z4 − 0.001216z3 − 0.001811z2

−0.005701z − 0.002937
−0.002413z + 0.02399

(33)

with Gj
d(z), j = 1, 2 aregiven by:

G1
d(z) =

0.0512z4 + 0.0953z3 + 0.0315z2 + 0.0861z + 0.0944
z5 − 0.1139z4 − 0.1248 z3 − 0.13 z2 − 0.1347z − 0.1381

G2
d(z) =

0.1175z3 + 0.0851z2 + 0.0553z + 0.0272
z4 − 0.1586z3 + 0.1684z2 + 0.1835z + 0.2043

(34)

Therefore we calculate the shaped system corresponding for
each operation point:

G1
d,sh(z) =

0.006525s6 + 0.01265s5 − 0.000575s4 + 0.001s3+
s7 − 1.996s6 + 0.9716s5 + 0.0044s4 − 0.0001s3+

0.009475s2 − 0.008375s− 0.01019
0.0007s2 + 0.1411s− 0.1218

G2
d,sh(z) =

0.015s5 + 0.012s4 − 0.0048s3 − 0.005175s2−
s6 − 2.041s5 + 1.012s4 − 0.0065s3 − 0.0075s2+

0.0057s− 0.002938
0.2226s− 0.1802

(35)

The result of the simulation underSimulink of the shaped
system is given in Figures 7 and 8, where we represent the
output and reference signals and control signal respectively.
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Fig. 7. Outputy and referencer signals of theshapedsystem

3. Synthesis of a Nonlinear 
Robust Controller

 

3.1. Control by Gain Scheduling Technique 

3.2. Synthesis of a Robust Controller  
for the PT326 Process Trainer 
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Fig. 8. Controlsignalu of the shaped system

2) Synthesis of robust controllers:After all calculation we
get the maximum stability marginεmax for each operating
point:

ε1
max = 0.4795, ε2

max = 0.5043 (36)

By applying the LSDP approach, arobust controllerK∞,opt

is calculated for each operating point:

K1
∞,opt = e−2−21.54z7 + 21.26z6 + 0.5492z5 + 0.4548z4

z7 − 1.641z6 + 0.6605z5 − 0.007911z4

,
+0.4582z3 + 0.4431z2 − 2.596z + 1.082e−13

−0.01245z3 − 0.01356z2 + 0.1278z − 0.08419

K2
∞,opt = e−2−22.34z5 + 23.06z4 + 0.6663z3 + 0.8123z2

z6 − 1.678z5 + 0.6781z4 − 0.02375z3

,
+0.9822z − 3.987

−0.02754z2 + 0.1992z − 0.1237
(37)

Then, the final robust controllers are calculated:

K1
d,f =

−3.23z9 + 2.94z8 + 3.06z7 − 2.623z6 + 4.22z5

1.175z9 − 4.139z8 + 5.441z7 − 0.3171z6 + 0.06875z5

+1.399z4 − 4.423z3 − 8.601z2 + 3.294z − 1.373
+3.413z4 + 0.01672z3 − 0.03955z2 + 0.03186z − 0.008726

K2
d,f =

−3.349z7 + 3.201z6 + 3.199z5 − 2.796z4

0.1175z8 − 0.4183z7 + 0.5543z6 − 0.3266z5

+7.203z3 − 0.06896z2 − 0.01704z + 0.05059
+0.07229z4 + 0.02704z3 − 0.06144z2 + 0.048z − 0.01282

(38)

We present in Figures 9 to 12, the results of the validation
of the calculated robust controller for each operating point.

The control of nonlinear system by the gain scheduling
technique can be illustrated by equation (32) and Figure
13, where the global robust controllerKglobal

∞ of the PT326
is constructed by switching between the local controllers
Kj
∞,opt, j = 1, 2 depending on the selection signalIs of

the functionFcn controlling the switching of the switcher
according to the value of the sequencing parametery.

{
I1 = 1 and Kglobal

∞ = K1
d,f if 0.5 ≤ y ≤ 3.3

I2 = 2 and Kglobal
∞ = K2

d,f if 3.3 < y ≤ 6.3 (39)
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Fig. 9. Validationof the robust controllerK1
∞,opt
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Fig. 10. Controlsignalu for the first operating point

To validate the global robust controller, we present in
Figures 14, 15 and 16 the evolution of reference and output
signals, control signal and selection signal respectively.

Figure 14 shows that the output signaly(k) follows the
evolution of the reference signalr(k) for both operating points.
This highlights the good performance of the global robust con-
troller function of the two robust controllersKj

∞,opt, j = 1, 2.
These latter are involved depending on the temperature vari-
ation which represents the scheduling parameter as described
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Fig. 11. Validationof the robust controllerK2
∞,opt
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Fig. 12. Control signalu for the second operating point

Fig. 13. Global controlby gain scheduling

in (32). This variation is illustrated by Figure 16, where the
selection signalIs switch between the two robust controllers.

To test the robustness of the global robust controller facing
parametric uncertainties, we propose to disrupt the system
by changing the value of the resistance of the heater. The
result, presented in Figure 17, shows that the output track
well the reference even in presence of parametric uncertainty.
We present in Figure 18 the result of the simulation of a
PID controller for the same conditions. The result proves the
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Fig. 14. Reference andoutputsignals associated withKglobal
∞
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Fig. 15. Control signalassociatedwith Kglobal
∞

Fig. 16. Selection signalassociatedwith Kglobal
∞

superiority of the robustness of the global robust controller
compared to the PID controller.
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Fig. 17. Robustnesstestof the global robust controller

In this paper we used the LSDP of McFarlane and Glover
(1990) combined with the gain scheduling technique to syn-
thetize a robust controller for a nonlinear system, by dividing
its operating domain to two point. This was done in 5 steps 1)
Using a weighting filter to ameliorate the system’s open loop
performances. 2) Representation of the shaped system’s uncer-
tainties as LNCF. 3) Synthesis of a feedback controller which

4. Conclusion 
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Fig. 18. Robustness testof the PID controller

robustly stabilizes the LNCF of the shaped system for each
operating point. 4) The final robust controllers are calculated
by combining the weighting filters and the robust controllers.
5) Finally the global robust controller is constructed using
the gain scheduling technique by switching between the final
robust controllers.
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